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Abstract—The application of a Twyman—Green interferometer to measurements in static and
dynamic fracture mechanics is described. Twyman—Green interferometry shows the absence of a
dominant singular field in the out-of-plane deformation in the vicinity of a crack. For relatively
brittle fracture and except near the crack flanks, the spatial gradient of the out-of-plane displacement
for a quasi-statically propagating crack is well predicted by elastostatic simulations. In addition,
this method has been employed to elucidate certain transient features involving cracks propagating
at large fractions of the material wave speeds. The free surface out-of-plane deformation surrounding
a constant velocity dynamically propagating crack in a plate is compared with the equivalent
elastostatic case. It appears that the dynamic deformation may not be obtained from the static
deformation simply by a Prandtl-Glauert mapping as might be suggested by the solution for the
equivalent two-dimensional generalized plane stress problem. Alternatively, the general character
of the three-dimensional dynamic surface deformation may be approximately fitted by a Doppler
mapping of the static deformation when scaled by the crack to plate wave speed ratio.

1. INTRODUCTION

In the early stages of an experimental endeavor, a researcher invariably must choose
between employing an existing measurement technique or developing an entirely new
approach. For any given epoch this selection is typically severely constrained by available
resources. The development of a new method is fraught with additional burdens and
hazards that have been remedied for an established approach. With a new technique not
only must the original measurement task be performed, but the design, construction, and
adjustment of the method itself must also be explored. Further, a new method runs the risk
of utterly failing, or at least not meeting expectations due to some unforeseen hurdle.

Even with such additional obstacles and risks, the impetus to develop new methods,
or at least improve an existing observation, stems from several sources. Typically, after an
experiment has been performed, the experience leads to straightforward improvements in
the technique. However, more significantly, after a whole set of observations have been
made with an established (and perhaps incrementally improved) method, fundamental
questions frequently remain. Many times these fundamental issues deal with aspects of the
experiment that were not measured, hence serving as an incentive to refine and expand the
observations. For instance, one aspect of the debate concerning the existence of a unique
velocity versus stress intensity relationship for any given material stems in a large part from
the experimental methods employed. When a technique that averages properties through
the thickness is used such a relationship appears to exist (Irwin er al., 1979). However, the
results from a spatially more precise experiment (Knauss and Ravi-Chandar, 1985) do not
support this conclusion. Part of the uncertainty here is that the details of the crack advance
are often not measured with sufficient temporal or spatial resolution.

Thus, partially due to practical concerns and the interplay with theory, experiments
such as those performed in fracture mechanics have tended to evolve slowly from studies
on global properties of failure to investigations that are refined to observe local behavior.
For instance, early studies established the global energetics of quasi-static brittle failure
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Fig. 1. Schematic of the Twyman—Green interferometer to measure out-of-plane displacement (Pfaff,
1991).

(Griffith, 1920) and later investigations settled issues dealing with the through-the-thickness
average field properties surrounding a slowly moving crack [see for example Wells and Post
(1954) ; Bradley and Kobayashi (1970)]. Other studies have led to improved spatial and
temporal resolution [see for example Theocaris (1963); Kim (1985)], as well as to the
measurement of aspects of the entire field surrounding a crack [see for example Dudderar
and O’Regan (1971) ; Smith (1973)]. Recent efforts have sought to maximize aspects of the
spatial and temporal resolution, simultaneously with making the measurement technique
directly interpretable in terms of fracture mechanics quantities (Rosakis and Zehnder, 1985)
by either automation (Sutton er al., 1992) or by special diagnostics during the experiment
(Tippur et al., 1991).

Twyman—Green interferometry, as applied to dynamic fracture, is another step toward
improving a fracture mechanicians’ observational skills. However, rather than attempt to
make results directly interpretable in terms of known theoretical results, the emphasis here
is to develop a technique that unambiguously measures properties of the fractures process
at small spatial and temporal resolutions. The motivation for introducing this particular
technique by discussing and comparing prior measurement methods [for example Creath
(1989)], and its development and tailoring to dynamic fracture, is left for a separate report
(Pfaff et al., 1994). Instead, evidence that the method has significant merit is provided by
way of example experiments discussed in the following section. The remaining sections
interpret these measurements. Section 3 summarizes, by way of a mathematical function, a
theoretical perfectly elastic out-of-plane displacement field. This field is compared to the
measurements and found to agree remarkably well except near the crack flanks where some
plastic wake is to be expected. Since theoretical (analytical or numerical) results for the
out-of-plane displacement field are generally unavailable, Section 4 interprets the dynamic
crack measurement in terms of similarity rules. A Doppler similarity transformation of
the static out-of-plane displacement is found to predict certain features of the dynamic
measurements provided the dominant material wave speed is taken as the three-dimensional
dilatational wave speed. The final section summarizes some implications of these results.

2. RECENT OBSERVATIONS

The interferometer shown in Fig. 1 has been used in several recent experiments con-
cerning propagation of a crack in thin sheets of polymethylmethacrylate (PMMA). It
operates by interfering the light between a reference and specimen surface. Thus, if the
reference surface is flat (as shown here), the interference pattern describes the deviation of
the specimen surface from planarity. In more detail, the instrument functions by splitting
a coherent plane wave of light at a beam splitter. The two plane waves reflect off two
separate surfaces and are then recombined and interfere at the same beam splitter. The
light is then collected and recorded by a camera of sufficient capability (Pfaff, 1991).
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The sheets used in the experiments described below were nominally 30 cm square by
4.7 mm thick, were loaded under quasi-static and dynamic loading conditions. The quasi-
static loading was applied far above and below the crack flanks in a “single edge notch”
configuration (Washabaugh, 1990). The dynamic loading was accomplished by an electro-
magnetic loading strip along the crack flanks several plate thicknesses from the crack tip
(Washabaugh and Knauss, 1993). In addition, by a slight perturbation in the local strength
properties along a very thin region (~ 10 um), the crack could be made to propagate at
velocities approaching the Rayleigh wave speed of the material (Washabaugh and Knauss,
1994).

These present experiments provide information on the out-of-plane displacement con-
tours of the surface in the vicinity of a crack moving at velocities ranging from 10~° mm/us
to near 1 mm/us. Interferograms for this velocity range are shown below in Figs 2—4.

Figure 2 shows the out-of-plane displacement contours near the tip of a slowly pro-
pagating crack. Since the original specimen in the region of this figure was already flat to
within a fringe, the only processing done to this photograph was to adjust the contrast. The
white region along the crack flanks (abscissa values less than —2 mm) is a surface notch
that does not extend through the thickness and was left over from the crack initiation
procedure. Also present in the lower right hand corner is a circular feature caused by a
small defect on the surface. A notable quality of the original of this photograph is that the
data extends to within a micrometer of the crack tip (Pfaff, 1991).

Figures 3 and 4 show the contours surrounding cracks moving at an appreciable
fraction of the Rayleigh wave speed. Both specimens were impulsively loaded along the
crack flanks (far outside the field displayed) by an electromagnetic loading coil. The data
was taken before waves could propagate to the edges of the material and back to the crack,
thus simulating (for a brief instant) an infinite plate. The white regions in the photographs
are attributed to angular aperture limitations of the collection optics. Both of these figures
required extensive processing of the original data to remove the initially non-flat surface
shape (Washabaugh and Knauss, 1994). The main difference between the two con-
figurations is that the data shown in Fig. 3 is from an unperturbed or virgin specimen. The
specimen that provided Fig. 4 had a small, almost imperceptible defect or interface, co-
aligned with the propagating crack. This co-aligned defect had the effect of robbing the
local material system of strength, with one consequence being an increase in the crack
propagation velocity (Washabaugh and Knauss, 1994). Figure 3 provides direct evidence
of a crack that is unsteadily propagating with a specific period (Washabaugh and Knauss,
1993).

3. THEORETICAL STATIC OUT-OF-PLANE DISPLACEMENT

In recent years numerous numerical investigations have been performed in an effort
to understand the three-dimensional elastodynamic field in the vicinity of a crack [see for
example Burton ez al. (1984) ; Nakamura and Parks (1988) ; Parsons et al. (1986) ; Smith
and Freund (1988) ; Krishnaswamy et al. (1991)]. With the existence of these studies, it is
natural to compare these theoretical predictions with the Twyman—Green interferograms
presented here. Due to several, perhaps unavoidable, constraints, such as publication limits,
many of the studies only explicitly report aspects of their work that are deemed of interest
in that particular publication. The unadulterated out-of-plane displacement field is rarely
in this category. Instead the out-of-plane displacement is usually filtered through some
experimental technique such as caustics (Smith and Freund, 1988). In addition, frequently
the configuration of the specimen in the numerical simulation differs from that found in
the experiment, thus leading an experimentalist to reproduce the numerical work for each
particular experiment.

Fortunately, Nakamura and Parks (1988) addressed a problem numerically that has
certain intrinsic features for any properly scaled experiment. Specifically, he investigated
the three-dimensionality of the displacement field of a planar structure loaded at several
plate thicknesses from the crack by the singular term or “K-field” of a planar approximation
to the equations of elastostatics (Taudou et al., 1992). Notably several graphs were available
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describing the three-dimensional deformation near the tip of the crack.t For more general
fully three-dimensional cases, the three-dimensional corrections to generalized plane stress
are much less dramatic for each of the higher order terms in the generalized crack field than
the correction to the plane stress “K-field”” term. Therefore, the plane stress form will
often suffice when superimposing these higher order terms with Nakamura’s fully three-
dimensional *“K-field”” to form solutions for those cases of more general far-field loading
conditions. It is important not to forget however, that the residual parabolic through
thickness boundary tractions associated with the r'%f; (6) and r*?*f; () terms in the gen-
eralized plane stress series are also singular,

Shown in eqn (1) is a normalized function #;, that can be used to fit Nakamura’s out-
of-plane displacement field. The form of this equation is motivated by noting that self
equilibrating fields in elastostatics have an exponential decay (Sokolnikoff, 1956) and that
care was taken to insure a smooth transition to the out-of-plane displacement field from
the plane stress approximation. Equation (2) defines a normalized radius, and eqn (3) is
used to convert between polar and Cartesian coordinates. Equation (1) can be fitted
to Nakamura’s out-of-plane displacement field to within approximately 0.5% using the
parameters defined in eqn (4) (Pfaff ez al., 1994) :
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a, = 1.07473
a, = 0.130624
(13 = 3.025
a, = 1.05335
as = 0.7258
as = 0.7172. 4

A contour plot of eqn (1) using these parameters is shown in Fig. 5.

Confidence that eqn (1), with the parameters specified as in eqn (4), is indeed a
repeatable result can be obtained by comparing aspects of the function to other three-
dimensional studies. In particular the contour shapes match the out-of-plane displacement
presented by Krishnaswamy ef al. (1991) to within a contour. This study investigated the
three-dimensional nature of a dynamically loaded three point bend specimen with a station-
ary crack. Although it would seem incongruous to compare an elastostatic solution to an
elastodynamic solution, the data presented by Krishnaswamy ez al. (1991) is for a sufficiently
long time after the initiation of loading that the deformation within a plate thickness of the
crack tip should be tending toward its elastostatic form. The field surrounding the crack in
the three point bend specimen, unlike the study by Nakamura, contains at least the next
higher order term in the plane stress approximation (Williams, 1957). The coefficient for
this term can be obtained directly from Krishnaswamy’s paper at non-dimensional radial
distances greater than | and along the axis of symmetry in front of the crack. Thus a new

t The authors gratefully acknowledge Professor Nakamura for supplying the raw numerical data for his
out-of-plane displacement figures, thus contributing to the accuracy of the fit.
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Fig. 2. An interferogram of the out-of-plane surface displacement of a quasi-statically moving crack
4.66 mm thick plate of polymethylmethacrylate. Contours represent a 312 nm change in elevation.
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Fig. 3. A corrected interferogram (Washabaugh and Knauss, 1994) of the out-of-plane surface
displacement of a crack moving at an average velocity of 0.52 mm/us (52% of C,) in a 4.6 mm thick
virgin plate of polymethylmethacrylate. Contours represent a 257 nm change in elevation.
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Fig. 4. A corrected interferogram (Washabaugh and Knauss, 1994) of the out-of-plane surface
displacement of a crack moving at an average velocity of 0.86 mm/us (85% of C,) in a 4.7 mm thick
interfacial plate of polymethylmethacrylate. The crack is propagating along an imperfectly sintered
interface that is 60% of the strength of the virgin material. Contours represent a 257 nm change in

elevation.
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Fig. 7. Comparison of eqn (7) overlaid on the experimental data of Fig. 2.
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Fig. 10. A corrected interferogram of the out-of-plane surface displacement of a crack moving at
an average velocity of 0.52 mm/us in a virgin 4.6 mm thick plate of polymethylmethacrylate.
Contours represent a 257 nm change in elevation.



948

R. D. Pfaff er al.

-1 -0.5 0 xpt 0.5

Fig. 11. A corrected interferogram of the out-of-plane surface displacement of a crack moving at

an average velocity of 0.86 mmy/us in an interfacial 4.7 mm thick plate of polymethylmethacrylate.

The crack is propagating along an imperfectly sintered interface that possesses 60% of the strength
of the virgin material. Contours represent a 257 nm change in elevation.
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Fig. 5. Displacement contours as described from eqn (1) with the parameters given in eqn (4). This
is essentially the out-of-plane displacement field predicted by Nakamura (1988).

function @¥"° (r,, 6) can be obtained from the original function as described by eqn (5) with
the parameter b, found from the slope of Fig. 9(a) in Krishnaswamy et al. (1991):

0
af® (r,, 0) = i5(r,, ) +byr, cos (§> &)

b, = —0.035. (6)

A plot of eqn (5), overlaid on the two- and three-dimensional results of Krishnaswamy et
al. (1991), is shown in Fig. 6. The contours’ shapes essentially match. The fact that the out-
of-plane displacement gradient field from a static analysis can be used to find the gradients
from a “dynamic” study foreshadows some of the discussion in the subsequent section. For
this specific case, the correspondence between the out-of-plane static field and the
“dynamic” field suggests that at least in terms of the out-of-plane displacement, the three
point bend experiments (Krishnaswamy ef al., 1991) are essentially ““‘quasi-static”. Further,
one might note that the addition of the higher order term is critical for this match. Ignoring
this term would create a very obvious discrepancy in the shapes of the contours.

The relationship between the non-dimensional out-of-plane displacement of eqn (1)
and the true displacements is shown in eqn (7) :

e 0) = = B0 ) )

This result can be compared directly with the experimental measurements of the out-of-
plane displacement field. In particular for, quasi-statically loaded PMMA with a Young’s
modulus £ = 3.1 GPa (Washabaugh, 1990), Poisson’s ratio v = 0.351 (McCammond and
Motycka, 1974) and stress intensity factor K; = 1.15 MPa \/E (Washabaugh, 1990), the



950

x2/t

.5

R. D. Pfaff et al.

o

.

-1

I
F;

0.5

0 X/t

0.

5

Fig. 6. Comparison of eqn (5) and Fig. 9 (c) of Krishnaswamy et al. (1991) for a dynamically loaded
three point bend specimen.
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theoretical surface deformation can be compared to the quasi-statically growing crack of
Fig. 2. A plot of eqn (7) overlaid on a lower contrast version of the experimental data is
shown in Fig. 7.

For the region in front of the slowly moving crack there is generally good agreement,
between the magnitude of the slopes of the theoretical and measured displacements
especially close to the crack tip. However, the shapes of the contours in front of the crack
are slightly off by approximately one fringe. This discrepancy is partially due to higher
order terms or may be influenced by the behavior of the material in the wake of the crack.
Behind the crack, the agreement between the theoretical and measured displacements breaks
down. A possible explanation which requires further study is that the theoretical crack is
purely elastic, while the measured crack is slowly propagating. In other words, the dis-
placement field presented in Fig. 2 is truly a crack and not merely an elastic notch. A
hypothesis is that the discrepancy between the experimental data and theory is due at least
partially to a wake of plastically deformed material. Thus the magnitude of the slope of
deformation in front of a true quasi-statically propagating crack is well represented by a
three-dimensional analysis. However, starting at approximately 45° to the crack flanks,
there is a substantial discrepancy with the elastic analysis.

4. EFFECT OF DYNAMIC CRACK MOTION

An early study that examined aspects of the out-of-plane displacement field found that
a dynamically moving crack allowed better agreement between measurement and the elastic
theory along the crack flanks than a quasi-statically moving crack (Washabaugh, 1990).
This is evident in Figs 3 and 4 when compared with Fig. 2. The fringes in the dynamic
experiments bend back toward the crack tip in a fashion similar to Fig. 5. Thus the dynamic
data, at least in terms of qualitative features along the crack flank, are actually better than
the quasi-static data, perhaps because the material is fracturing in a more brittle fashion.
This correspondence between the theoretical result and the dynamic data is explored further
below where the objective is to examine whether a similarity transformation (Liepmann
and Roshko, 1957) exists between the clastostatic deformations and those observed for
steadily propagating cracks.

4.1. Similarity rules

Within the framework of elastodynamics, similarity transformations are used to map
steady-state problems to an equivalent static problem. For example, the Prandtl-Glauert
similarity transformation is used to solve steady-state problems in anti-plane shear (Freund,
1990). The general two-dimensional elastostatic plane problem is often formulated using
two potentials, an in-plane dilatation potential and a two-dimensional shear potential.
Likewise, the two-dimensional elastodynamic plane problem is usually formulated in terms
of a dilatational potential and a shear potential. Thus, for steady-state plane dynamic
problems, there holds a very simple relationship between the static and dynamic fields,
wherein a separate Prandtl-Glauert transformation is applied to each of the two potentials.
Further, the out-of-plane deformation associated with either the elastostatic or elasto-
dynamic generalized plane stress is a function of the two-dimensional dilatational potential
only, and therefore may be mapped directly using a single Prandtl-Glauert transformation.
The fully three-dimensional steady-state elastodynamic problem involving the presence of
planar traction free boundaries is considerably more complex in its relation to the elasto-
static problem. It is not to be expected that the out-of-plane surface displacement field for
the three-dimensional elastostatic problem may be mapped directly by a Prandtl-Glauert
transformation into the out-of-plane displacement field for the equivalent steady-state
elastodynamic problem. Thus, similarity between Fig. 5 and Figs 3 and 4 is investigated
with the knowledge that a full accounting may not currently be possible.

4.1.1. Prandtl-Glauert. Since the Prandtl-Glauert mapping has been used often in the
solution of steady-state continuum mechanics problems, its properties were investigated.
Shown below in eqns (8) and (9) is the Prandtl-Glauert mapping between the components
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Fig. 9. Doppler mapping as a function of crack speed 45 [X{ (x,, x,), X$ (x|, x,)] at speed ratios
from 0.1 to 0.9.

of one Cartesian frame x and another X. Here v is the steady-state crack propagation speed
and c is the material wave speed. For current purposes assigning the material wave speed
to either the dilatational or shear speeds is left ambiguous. In addition since this mapping
deals with Cartesian components it is notationally useful to re-define the normalized out-
of-plane displacement function as in eqn (10) :

ie |1 -() ®

XY (x, %) = x4
XD (xy, X)) = oxy )
5 (xy,%3) = iy [\/Zn (x1 +x3), atan (;ﬁ)} (10)
1

A series of Prandtl-Glauert mappings of the normalized out-of-plane displacement function
45 at speed ratios v/c between 0.1 and 0.9 is shown in Fig. 8. This mapping is of course
symmetric with respect to both the ordinate and abscissa. The qualitative effect is to
compress the fringe shapes in the horizontal direction. If the mappings from Fig. 8 are
overlaid on Figs 3 and 4, the overall agreement is not good for any velocity ratio. However,
very close to the tip elongation of the first few fringes have qualitatively the correct shape
to match the fringes at the tips of both interferograms if they are scaled by the shear wave
speed. In other words, the shape of the fringes at the tip of the crack is compressed by an
amount consistent with a Prandtl-Glauert mapping when c¢ is equal to the shear wave
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speed. For Figs 3 and 4, this corresponds to a crack speed ratio of 0.5 and 0.8, respectively.
This is not a very strong statement since only one fringe is being compared and the ability
of these tests to discern fringe shapes is diminished at the crack tip due to the small amount
of data collected near the tip.

4.1.2. Doppler. A second mapping can be explored by considering the difference in the
motion of waves radiating from a stationary versus a steadily moving source. This is called
a Doppler mapping which takes originally concentric circles and transforms them to non-
concentric circles. The centers of the transformed circles are equally spaced along the
propagation path of the source (Liepmann and Roshko, 1957). An explicit form of this
mapping is shown in eqn (11). The inverse of this mapping is typically more recognizable
and is given in eqn (12):

D 2 2
vl=x,+/x7+o’x3

X(:(xlsxz):xl‘F' ¢ an
c 7
X3 (x,x2) = x,
v
x{ (X, X3) =X1+;\/X3+X%
x§ (X, Xy) = Xo. (12)

A series of Doppler mappings of the normalized out-of-plane displacement function 5 at
speed ratios v/c between 0.1 and 0.9 is shown in Fig. 9. This mapping is symmetric with
respect to the abscissa. The qualitative effect is to shift the fringes by varying degrees with
respect to radial distance in the negative horizontal direction. More importantly the map-
ping develops lobes in the fringe pattern that are also evident in the experimental data.

4.2. Comparison with dynamic experimental data

If the material wave speed ¢ is set to the dilatational wave speed and specific contours
are generated for the two dynamic interferograms, the general fit of the Doppler trans-
formation can be ascertained. Shown in Figs 10 and 11 are the specific mapped contours
for each of the dynamic interferograms overlaid on a reduced contrast version of the images
of Figs 3 and 4, respectively. Note that the non-dimensional out-of-plane displacements
are compared with the interferograms. Thus, only the contour shapes and relative spacing
are being compared. This is partially justified since both the propagation stress intensity
and the modulus under dynamic conditions increase in approximately the same proportion
{(Washabaugh, 1990).

For both sets of data the mapped theoretical shapes within a normalized radius of 0.5
agree quite well. At larger radial distances, asymmetries are evident in the data and the
agreement is less impressive. Perhaps the most significant discrepancy is the difference in
fringe spacing at the large radial distances. Clearly a simple Doppler mapping does not
account for some aspect of the magnitude of the deformation. Perhaps these are due to
some higher order effects [for example Taudou ez a/. (1992)].

One other easily recognizable difficulty is the phenomenon of waves radiating from
" the crack tip and causing the fringes to exhibit wiggles. The latter have not been accounted
for in this analysis. Thus, the gross features of the out-of-plane displacement of a steadily
propagating crack can be accounted for by a dilatational wave scaled Doppler mapping of
the static three-dimensional field. A shear wave scaling or a Prandtl--Glauert mapping does
not work.
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5. SUMMARY AND DISCUSSION

The theoretical out-of-plane displacement function representing the corresponding
static problem appears to predict the surface slopes preceding a quasi-statically propagating
crack. The reason for the discrepancy in the wake of the crack requires further investigation
but is potentially due to plasticity or viscoelasticity of the material. One could easily imagine
using this approach to effectively calculate K, as long as only the data in front of the crack
is used, and the crack behaves in a sufficiently brittle manner. Thus, in an existing structure,
it may be practical to make an in situ non-destructive measurement of the plane—normal
surface deformation near the tip of an existing (and properly configured) crack to determine
its current stress intensity.

In addition, gross features of the dynamic interferograms near the crack tip are better
described by a Doppler similarity transformation of the elastostatic solution than by a
Prandtl-Glauert mapping. This transformation is successful, provided the wave speed used
in the mapping is taken as the dilatational wave speed. Further study is required, perhaps
with an elastodynamic simulation, to truly account for the data. It is important to note
here that the out-of-plane displacement field for a rapidly propagating crack is significantly
different than the elastostatic field. Thus, experimental techniques which incorporate
measurement of the out-of-plane displacement and rely on calibration using a static crack
need significant adjustment when used in a dynamic scenario.
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